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MULTIPLE lNTEGRAi~ EXPANSIOMS IC?. :~~NLINEAB FlLT~ tI~ G
S. K. Mitter and P. Ocone

Massachusetts Institute of ‘Technolo~ ’. 

Cambridge, MA

1. Introduction
In their seminal paper , Fujisaki , Kallianpur and to a stochastic differential equation.

Kunita 1) showed how the best least squares estimate Accordingly, after developing some theory of multi-
of a signal contained in atcuitive white noise cusn be - pie ~r.tegral expansions we show how E{ft(x(.i1IF~} canrepresented as a st~ chos t 1r Integral with respect to be re~resented as a ratio of multiple integralinnovation process, the !ntegral being adapted to the expalisirns. The chief theoretical resu lt about multI—observation process. The difficulty with this repre— pie Integrals, the multip]Acation formula of theorem 2,sentation is that in general this estimate is not 

is the:, used in conjunction with this representationuseful for computing the estimate since the innovations 
to derive equations for the best suboptima]. estimateprocess depends on the estimate of the signal itself, 
of c~y order. The Kalr.an filter is derived and theIn this paper we discuss representation of the estimate 
qua~ •a~ic filter discussed in detail as examples.directly in terms of the c~servation process. In 

Multiple Integrals. In what follows, let (b(t),F
~
)doing so, we derive new results on multiple integral

~expansions for square—integrable functionals of the denote a standard 3rovnlan motion v.r,t. increasing
• observation process and show the connection of this family of sub—a—algebras Ft. We assume familiarity

work to the theory of contraction operators on Fock 
with the stochastic integral f ~$ db(s) where$5(u) isspace. This letter development is due to Nelson and

Segal. a measurable process adapted to
We also present several applications of these 

2results to determining sub—optimal filters. DefinitIon 2 Let faL (1O ,T]°’)~{fcL
2((O,TJ~ )Ir symmetrlc}.

1(m) (f), the nth order multiple (or iterated) integral2. Multiple Integrals and Filtering 
up to t<T of f , is defined recursively byIn this section, we shall discuss applications

of multiple integral expansions to the general fil— I )f)=~
tI~

m_l)f(S,..)db(S) 
2 ~~~~ ‘teriag problem. We will consider the ‘canonical’ In (3) , f(s...) is the function of L ~~~~~~~~ formedscalar filtering model: 

by holding the first element of f fixed at s. Strictly
speaking, for (3) to make sense it must be shown that

~~~~ h(x5
)ds + v~ (1) 

1
(n_1)(f(5,,~)) has a measurable version, but this can$under the assumptions 

easily be done by approximating I with separablea) x
~

and v~ are independent processes 
functions. Let (f g)=~ .ftf(5 .•9)g(5 5 )~5~~~$

b) for some r>o E~
Th
2(x

5
)ds<o. (2) 

denote the inner product of L2([O,T)~ ). By applyingc) w~ is a standard 3ro~rnian motion standar d facts about stochastic integrals, the following
basic properties of the multiple integral are derived :If rt

(x(.))=rt(x
5.slt) is a causal functional of the 

for any n and m, t<T, and fcL2((O,PJ~ ), gCL
2([Ci ,T]m)

signal x~ and F~Ea{y5~O<s<t}5 sub—a—algebra generated a) Eix~ ’~(r)).o (It )

0 if m#n
by y ,O<s<t, then we are interested in calculating the 

b) E I~
n

Cf1I~
m (g= 1/fl,(fg) if m=no~timal least squares estimate of ft(x

c~~
) 

( f l ) (1) depends only on the values ofNote also that I
for t~P. f(s1,..~s~) for s>s >..>s . (3) adopts the useful1— 2——nDefinition 1 defined in (1) and (2) is called an convent ion of allowing f  to ‘be defined in all of

observation sem±—martin~ale. [O,T]~ by a Bymuetric extension.Throughout, let (~Z,F,P) denote the underlying probe— I’~~ti1 integrals are useful in constructing Ibility space. 
Wiener’s homogeneous chaos expansion, which as an

Now E(ft(x)IF~
JcL(cl,F

~
,P) (={F~ measurable rv’s}) exe.-lple c~’ the general theory presented later, decomposes

by the definition of conditional expectation, and, L2(F~) Into a direct sun of Hilbert space tensor
therefore , any method that represents elements of 

preducts Indeed if H SR, H ~t4T~
)
(f)IfcL2([o,TJ~ )) n>l0 flin a simple and consistent way, say by 

a simple application of (It ) a) and b) demonstrates thatexpansion in terms of a simple class of functionals of 
H~ is a Hu bert space for every n and that H~j Hm for Ccan be applied to the optimal estimate, In 

(vhere j  is defined in the sense of the innerthis work, we have adopted multiple integrals of 
product (x ,y).Exy). In fact we have more:

the form ~t..~sr_lk(~ ,S1,..S )dY($ )..dY(S1) Theorem 1 (Ito—Wiener)

L2(F~)=H.NeH. as the basic objects of expansion. First, y
~ 
is a 

~ 1 2
stochastic translation of 3rownian motion and 2 b kernels (k I exivt.  such tThat is, for $EL (Fthrough a change of measure, much Brownian theory can 

~~
)(k~) (5)~~

._.
U n•O

be carried over. Secondly, iterated Integrala pz’oyide 4~~ +Z I
0 n lthe natural concept of a polynomial in th~ y process

and thus they give a fra.’nei.ork for considering best Proof. See Ito [~ end Kallianpur (~~.quadratic, cubic, etc. suboptiznal estimation pro— Theorem 1 suggests the following natural question,
cedures. Finally, when the kernel k of Suppose f tL 2([O ,T]~~) and gcL2( [O ,TJ L). Is it then trug~~~~~.t 5~~—~

~~~~~ 
kdy ..dy

5, is separable , a consLruction of 
that I~~~(f)I~

B)(g)ct,2(F~) for toT, and if so, what
Brockett(2) realizes at recursively as thc solution are tho kernels (k~}1 as in (5), such that I~(f)I~(g) 

*

t 
. 1 Approved for publie relies,:
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— (‘)
• Lh +Z I (a

~~ ~~~~~ ~ i~
? Our answer , which will become a a) The case (m ,n )”(k ,l) implies the case

b) The cases (m,n)~ (k-l ,j), (k,j—i) and (k—i ,~—l)principal tool ot’ investigation, requires some j~~ iy the case (a ,j ) .
preliminary notation.

• Definition 3 i) P viii denote the projection of Equation ( 8 ) ,  the multiplication formula, is a.~tu—S ally a generalization of similar looking Hermit.• L2Uo T1~) onto L2UO,T]~) polynomial identity

ha(x)h ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (x) O.~a k~0 k k r—k m+n—2k
where S permutation group on n letters. 

~~~~~ 
a x2/2,dx )e To unders’~s.nd

ii) Let O<k<nin (m,n) tsL2((0 ,T]~ ), gcL2([0,TJU) 
where h

5
(x) 

~~~~~~~

• (6) the connection , observe tbat the polynomials hm(x )
provide an alternate means of constructing the

~~~~~~~ 

,.
~~f(r1,.. ,rh,sl,..S )g(r •.rk, sn_k+l..sn+n 2 k )drk..drln-k 1 decomposition of theorem 1. In fact, if

(fe~(t)g)(s1
..s,~~f l 2~)=(? [f~ (t)gJ)(s1.?s~~52~) (7) is a complete orthonormal basis of L2((O,T1) and

To illustrate, if n>m=k, then, using the symmetry of 
G~ 5SPan(,~~1 

hp3
(~
t
~j(j)(s)db(s))Ipj+_4pr~nhi ~~i1 r

)l ~~~~~~~~~~~~ ~ ) pairvise unequal)
I and g,(fe~(t)g)(s1

..s
fl~~ 1 n—rn then Ito ( 3 has shown that H ~G C denotes ciosu~re).a n

xg(ri..r )dr
~

..dr1. It is useful to think of the tune— S (See alsoKaliianpur ( 4 ]). Thus a typical element

tions I and g as tensors, for, in fact L2([0,T]~ ) I~~~(f)cH is a generalization of a Heraite polynomial.t m
EL2[o,T]~..~L

2([o,T]) (n times), Therefore, as inspec— The slight discrepency between the factors in (11) and
tion of (6) and (7) suggests, Q

~
(t) may be interpreted (8) arises from the normalizations involved in the

as a k— fold symmetrized tensor contraction, definitions of h , andnTheorem 2. Let tcL2((0,T?), gcL
2
([0,T)

m). Then (8) has consequences that relate directly to the
• 1(fl)(f)1(Ul~g)~~2~pb) for t1T and , theory of contractions on sums of Hilbert space tensor

products presented in a later section. The point Is

~ 
that the multiplication formula can be used to so~..Iyrn—k the integrability of ktb order moments of the integral

Before sketching a proof, let us first demonstrate 1~m~~f), and ,indeed , a direct application of (8) using
that the l.h.s. of (8) is well—defined, lemma 1 and a recursion argument yields:
_______ 

2 “Lemma 1. Let fcL2([0,T)~ ), g5L
2(IO ,T)m).. For t~T Theorem 3 Let n>l and fcL Uo,T)~). For any k>..,

there exists H >0, independent of f, such that
In fact ~~~~~~~~~~~~~~~~ (91 E[4m ) ( f ) ) 2

~~M IMI2b0. (12)— r n ,k m
• where C depends on m, a ~nd k,

Proof, Let 1S~~
= cardinality (Sn) and j—m+n—2k. • Now, Segal 1 5 ] has previously derived (12) by tensor

product operator arguments, and , in addition, pro-;a sUsing Caucby—Schwarz repeatedly: 
- there exists a constant c such that M(m,k) nay he

,s )112
~~~~~~~ ~~~~~~~~~~ 11(j) j replaced by ~~~~~~ His argument thus connects (12)
and ‘ to a deeper general theory.

Theorem 3 has an interesting corollary .
• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &

T
~~

Tds dm 
Theorem It Let 

~ m~rn=l 
and I be functions in

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Then 
~~~ It~

_f!
~~*0 iff ~~~

~~~~~~~~~~~~~ iff ~~~ E[4n
)(f~)_4n

)(f)J
2k=O for any or all k.

Thus ~~~~~~~~~~~~~~~~~~ Proof By (kb) EE4n
)
(fm

)_4n)(f)12=*II~m_f(~- • I
Proof of theorem 2*: Only a sketch will be given, as using (12) completes the proof. 

• -
details are involved and unrevealing. First, it
suff ices to treat the case when f and g are separable, In the applications, we shall want to discusssince we can use lemma 1 to approximate general multiple integrals not with respect to Brownian r:ticn,f and g by separable functions. This makes questions but to an observation semi—martingale y

~
• We again -

concerning the interchange of dt and db(t) integrationc
easy to resolve. The case n 1 , m l  follows directly denote these integrals by 1(n)(1) without expliolt ,y
by applying Ito’s differentiation rule. Indeed , Itp’s indicating the dependence on y

~,
which should be

rule yields in general d eer from the context of their use. The simplest
= f

tI
(m)

(g)x(
n_l)

(f(B ,..))db(s) + (10) definition of such an integral uses ~ result stated In0 ~ theorem 
~,; namely , under condition (2) there exists~\~(n-l)(g( s ..))d b (s) + 1t1(n_ l) (f (5 ,..)) a measure P0 on (

Q,P) such that i)  y~ is Brovn an
O s

0 0°n (fl,F,P ) , and i i)  P and P are mutually absolutely-_

continuous.
Using (10) we can implement the following two stage Definition Is For feL2((o,TJ’~)

I
induction scheme to prove the theorem for all a and a, (n)(r)~~~

t..~
s(n_1)

f(s ..S )dI(a )~~Y(B ) 

egra~~~~
*Apparently, Japunese wor~ers have also recently t

~~ proved theorem 2 by means of functional analytic’ is a r . va. s .  equal to the Brownian multiple Sat
techni ques due to Mida G~ersonal communtcation from~~Hida) defined on (ft, F, F0).

2

I
I

• • - - • _ _ _ _ _ _ _ _ _ _ _ _
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~y absolute cont inu ity, I~~~(r) is a veil—defined r.v. l~(51
..S~)EIh(s1

).h(S~
))

on (il, F, P). Also, as further argumen~. will show, b) Full expansion. If E[exp[~
th
2
(s)dsfl<~ and

equals the iterated integral defined directly 
Ef2(t)exp~th2(s)dS<~, then

• on Cr), ~
‘, P) in the manner of definition 2, and thus the

• ‘natural ’ interpretation of ~~~(r) as an iteration f(t)
(t
~~~ 

I~
i
~ (k~ J

is preserved . It irrediately follows from definition ~ j l~~~~~~j ’ 
‘l+E°~

that the multiplication formula holds for the obser—
op 2 

where k~ and 1 are as above and the infinite series
1vation seni—martingale case. Likewise, •

~ ~~ ~ot~ converge in the L (P) norm .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Remarks 1. The kernels k and l
,~ 
depend only on the

• shows that theorem 3 extends as well. apriorl distribution of x(t).
Finally, it is important to compute the mean and

variance of integrals sr th respect to 2. The condition E(exp(~
th2(s)ds)}<0~ in (6) places

Lemma 2 Let E(~
Th2(x

5)ds)
’~(cm , Then for leCm and strong restrictions on the growth of the moments of

~
T
h2 s)cls. !.~oreover

ii EII~(f) J 2
~~~ ~~r~

db0e5 not depend oaf) H (~~ )
2=E0E0

fexp(2~
Th(s)dy(s)—fh

2(s)ds]IP~}0 dP0

~~ X I I I  = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
E0
exp (_~

Th2(s)ds]E0{exp21
Th(s)dy(s) (~~}

• . Proof’ The proof proceeds by induction on the order _ E e x p (~
Th2(s)dsJ

k, and the induction stops at k=m because of the

condition E(,t
t
h2(x)ds)~~

o,. Details will not be since f~h(s)dy(s) conditioned on P~ is normal v~tb

presented for lack of space, variance ~
Th2 s)ds.

3. Theorem 6 can be generalized without difficulty to
Filter expansions a~d anolications, We will now vector valued processes.

show that the Kallisnpur-Striebel formula, (13), Proof of theorem 6; For lack of space we give only an
for the optimal estimate can be developed into a heuristic sketch. The principal idea comes from
representation of the estimate as a ratio of two mult— observir.g that, by using Ito’s differentiation rule
iple integral expansions. ‘ This technique bears coxnpar— dL ( t )”h (t )L( t)dy ( t) .  In other symbols,
ison to the work of Hterzio (6 ], who derived simular
expressions in an effort to approximate the conditional L(t)1+~

th(S)L(S)dY(S) (16)
distribution of the signal given the observation By iterating (16):
process. Here we focus on the use of the expansion

- - to derive equations fox- suboptina]. filters. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
• Recall the filtering problem 1)—2), Denote Continuing such iteration ad infinitum we derive the

b(x(,s)) by h(s), formal expression

t~(x(.))~~ 1(t), and E{r(t)~F~Jby ~~~~ and def ine L(t) 1+ li
t. ~~~~~~~~~~~~~~~~~~~~~~~~~ (ii)

L(t)=exp[~
t
h(s)dy(s)_l/2~th2(s)ds]. Nov substitute (17) into the term E

01L(t)IF~J. We get:

Also, define a new measure P on (fl,F) by E~~L(t~F~]
l+f’ Hj=l 00

exp (_ 1th(s)dv(si_ l/2 1th2Cs)ds] . =1+E~
’
_1i~~

5i_l E0(h(s i)..h(s j  )IF~
}dY(si..dy(si

)OP
Theorem 5 Under the hypothese of (2)

i) P0 is a probability measure and P and P 
1 E

~,~1 1 1 E O{ ~~ 
S
j

) S
j

)

are mutually absolutely continuous with ~~0~~
L(T1. =l+E;14i

)(l~). (18)

ii) Under P0 yCt) Is a Brownian motion independent The second e~uality uses a stochastic ‘Pubini ’ theorem
of X(t ) .  found, for example , in Liptser and Shiryaye’, (8 ]; for

iii) x(t) has the same distribution under P0
as the process 4m (s) adapted to the Brownian motion

under P
iv) (Kallianpur , Striebel) (b~ , 

~~~ 
and satisfying E(1

T,2(s)ds]~~

E {f(t) ) E 0(f(t ) f r IF~}/~j~~~ IF~} (13) 
E(~~~ 5db ( s ) I F ~ ) 

I
TE[, IF

bJdb( )

iE0{f(t)L(t)IF~)/E0{L(t)lF~}, 
The third equality follows from Theorem 5 ii) and iii),
and the fourth equality by definition. By a sImIlar

proof See Wong f7 1, 
. 

calculation,

Let ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ E0{f(t)L(t)IF~
)l+Z” I~~~(k

~ ~~~~ t ~
). (19)

Theorem 6 a) Partial expansion Now (18) and (19) can be substituted in

• Suppose E(1
th2(s)ds)D<~ and E1f~(sx1

th~~~ds)
1’J<~. 

f(t) E0{f (t )L ( t) Ir ~ )fE0{L (t ) Ip ~}

Then ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
to formally derive theorem 6, b). The partial expansion
if proved by carrying out the iteration procedure of

l i
i)

~ lj JsEo Lr (t )IFu  (16) only a finite number of times. The various
hypotheses in theorem C merely guarantee that the

v:cre k
,~
(t, s1~

..u~)”E[f(t)h(s1)..h(u1
)] and steps in each calculation are valid.

-. —•- - 

- • - -
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3. Applications for all c(t), But according to lemma 2, the set of rth
The explicit formulas (l~) and (15) can be applied order expansions in y(’) is a Hilbert apace, and thus,to the design of suboptimal filters in various vays. applying the projection theorem again, (23) holds it fFor example, one naive approach gould be to truncate

the numerator and denominator of the ratio at finite E(?(t)—~(t)]c(t)=O (21k)-4 orders and use the result as an approximate filter.
As noted in the remarks after theorem 6, the kernels for all rth order expansions c(t). Nov substitute the 

-

or the expansions do not involve the observations y(.) expression (13) for 1(t) into (2k);• and so can be computed off line. Theoretically then,
it is possible to construct the truncated filter. E {r (t )L(t ) ~

3} r(t)E0(L (t ) I )~}
This design, however ,is difficult to analyze and assess; H[~(t)_~

’(t)]c(t)~’~T. °
a more interesting use of theorem 6 involves finding E0(L(t)IF~}
estimates that are multiple integral expansions of 

~~~~,finite order.
Definition 5. a) An expression

c(t)c0(t) + £ 1I~~~(d~(t)) 
=E (E (f(t)L(t)IF~}—~(t)E (L(t)IF~}]c(tfl (25)

- with cr,(t)EL
2((~~~)

fl) is called an rth order expan— 
The second equality in (25) uses the identities

sian or y(.). ~~~~~~~~~~~~~~~~~~~~~~
b) An rth order expression aCt), satisfying 

~(E (L(t)lF~
’}]1,

0 t
E(f(t)—a(t))2,~~E[f(t)—c(t)J

2 
which are easily demonstrated. Nov under P~~y(.) is

for any other rth order c(t), is called the best rth a Brownian motion and integrals of different orders
order estimate of f(t). are orthogonal. Thus, using (20) and

The best rth estimate will be denoted by 1(t) (with 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r understood), and its kernels by a0,a ,..a1 r in (25),Given an order r, how can we find 1(t), that is

how can we determine a ,a.,.. ,a 9 As it turns out, we E[?’(t)—f(tflc(t)=E0[Ef(t)—g +Z~
’ I~~~(k —g )]c(t)o n l t  n

can apply the multipli~ation focmula to the filter
expansion to write integral equations for the kernels +E (f(t)c(t)~~(L~~(t)IF~)] (26)

~~ 
Begin by considering the product f(t)E0(L(t)JF~]

• of the estimate with the denominator of (13). If 
+E (c(t)E {f(t)L (t)Il~~

})

E(i
Th2(s)ds)

~~
’.Cc.
~ 

- An application of ler a  2 show that the second and
third terms of the r.h.s of (26) are zero for all c(t).
Clearly, the first tern can be zero for all nth order

then the expansion of E0[L(t)IF~) in 
(lIe) applies, and c(t) 1ff k g  for 0<n<r, and this completes the proof.

f(t)BQcL(t)~Fp=[
a0(t)+z 1I

m)
~fl(~)

m+E
~~ 

I(’~~(1n=l t a The equations (26) are actually integral equations

+ H (L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
for the kernels a~(t) of the best rth order estimate,

0 2r since the g~(t), 0<n<r, are found from a~(t)~0<n.cr,
~L e  g~, 

mn ,. .3r are calculated from a~(t) and 1 Ct) by the formula(5).’I~o illustrate, if r=l , 11(s)=Hh (a) and
• by use of the multiplication formula.

Theorem 7. Suppose E(1
Th
2(s)dsJ

21
~0,, , Hf~(t)<” 

Ef(t)=g0(t)~a0(t)+~
t
a1(t.u)Eh(u)dw

and Ef2(t)(JTh2(s)dsJ~~
’<w. 

Ef(t)h(s)=g1
(t ,s)

Then ‘~(t) a
0(t)+E~...14n)(a~(t)) is the best rth order

estimate 1ff Solving for

g0(t)”Ef(t) (21) al(t,
s)+L

ta
l(t,

u)cov(h(s),h(u))dw~cov(f(t),h(sfl.

• g~(t,s1. .s~)=E(f(t)h(s1). .h(s~)}=k 
, 1<n<r. This is the familiar %~iener—Hc~f equation for the best

linear estimate. In the best quadratic (r=2) ease, theProof: We must show that equations become more complicated. They are, assuming

E ( f ( t )— f ( t H 2< E [ f ( t ) — c (t ) J 2 (22) Eh(s)gO, Ef(t) !0 for simplcity,

for all nth grder expansions c(t) 1ff (21) holds. ao(t)._i
t
~~1 .a2(t , u1, u2)Eh(u1)h(u2)ds2ds1 (27a)

Eecall that 1(t) may be interpreted as the projection a1(t,s)~
Ef(t)h(s)_itai

(t ,u)Eh(a)h(u)du
of f(t) onto L2(r), F~, F). Thus the projection
theorem implies ,,.~tyi a2(t,u1,u2)cov[h(s),h(u1

)h(u2)3du2du1 (21b)

E(f(f)—?(t)J2—E(f(t)—~(t)J
2+E(~ (t)— ~(t)J

2 a2(t,s1,s2)cov(f(t) ,h(s1),h(s2)]
+ 2E(f (t )— ~(t ) J ( ~ (t)-?(t)1”E(f(t)—?(t) 12+E(r(t) .~ (t) 12 

.,~
ta(t u)Cov(h(s ) ,h(s2

) ,h(u)]du
Applying this calculation to the r.h.s. of (22) alsO,
(22) holds itt

(t)—?’(t)J
2<E(~ (t)—e(t)J

2 
(23) —e0

~~
’ a2(t,u1,u2)cov[h(s1

) ,h(s2),h(u
1)h(u2)1dU2

dU1(210)

- 
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• 
- (In (27), coy (x.~,..x )CE(x —EX ) .  ..(x -EX ) .] r(u)< 1  in r(n) . For r ,..,t~ in H we define ther 1 1 r r 1
‘ (27 ) shows how the kernels of dl.fferent orders are Wick polynomial:

dependent on one another. Though not a standard :F(11). . .F(f ):integral equation, (27) may be reduced, by using the
• solution of a related linear estimation problem, to a to be the orthogonal projection of F(f

1)...F(f~) into

Isingle integral equation for a . For fixed t this r(R) . In the special case, where H i s one dimensional
equation is of Fredhoim type f~r a2(t ,,’) and can
be solved by standard methods. We shall not go into and hence F(H).L2(R,B(R),(2r)

_1
~
2e 

2/2d~,r(u) is the
this theory here, one dimensional subspace spanned by the nth Hermite

The multiplication formula can also be used to polyncmial and :x~ : is the nth. Hermite polynomialderive the Kalnan filter. Consider the simple case normalization so that the leading coefficient is 1.
We have the formuladx(t)Idb(t) x(0)nO -

dy(t).’x(t)dt+dv(t)

where b(~) and w(~) are independent Brownian motions. 11(1),g,). ~~ (~~)~~~n)’ (3k)
- Then we can show that the optimal filter is where the sum is over all permutations rot 1,.. .n.

?(t)~,i
ta(t,s)dy(s) If all the f’s and g’s are equal , we get

where 1:P(f)~ :,F(f)~ ]=~’ 
~~~~~~~~~~~~~~~~ dx n!. (35)

a1(t ,s)+L
tal

(t ,u)Eb (u)b(s )=p~ (t )b (s) .  (28)
Let H1 be the complexification of H (and let H

The proof is simply to show that a(t ,s) can be chosen denote the n—fold Hilbert space) symmetric tensorso that product of N1 with itself. On H2.ve define the inner
~(t )=~

ta(t ,s)dy ( s) Ef(t )+E 14i~(k
1
) /l+ç 1I~

1) ( l
1
X29) product such thator

[Sym(f1~. . ~~~~ ,sym(g1
L . .g )]ç(ç~ ,g1] ...[ç~ ,sI~

) (~where
By expanding the l.h.s of (29) using (8), and

• equating kernels of different orders we derive the 
Sy:a l~~~~~n n l ElTf lr(l) L “

~
1T(n)~ 

(37 )
infinite set of equations.

From (31~) and (36) , that the napping
ia(t ’)e 0(t) l~~1+a1(t~ .)o

1(t)l~~1=k1. (31) :F(f
1

) . . .F ( f ) :  Sym( f1k ...~ f )

It can now be shown that if (31) is satisfied for 
extends uniquely to the unitary operator from r(H)~ onto

j=l, it is satified for all j >l , a result following H~. We use this mapping to identify F(H)n and H .from the ident ity for Gaussian random variables: Analogous to the fact that the one—dimensional Hermite
2/2

l
3
(s1..s~)=Eb(s1)..b(s~

) polynomials span L2(R,3(R),(2r)_lu’2e~~ ix), Segal proved

(38)=Z 2cov(b(s1)b(s2 ))E [b(s 2). .b(s
3 1

)b(s~~1). .b(s j )]  rCH)=z°’ Hn=o n

(see Miller ( 9 3. This derivation is somewhat formal for arbitrary real Hilbert space H. r(H) is Fock Space.
because the condition for the full expansion in (29) II the random field F(f) J’fdB, where

to hold is that E(expi
t
b2(s)ds]<o~, which is valid faL

2(R)=H and B is the standard Wiener process, the ci—
only for small t . ements of r(H) are multiple Wiener integrals (in the sense

• of  Ito).
I~. Relationship to Second Quantization - The space r(R) is intrinsically attached to the
(After Segal and Nelson). structure of H as a real Hilbert space. Thus if U:H+K

Let H be a real Hilbert space and let F:W’RV(~ ,A,u) 
is an orthogonal mapping of one real Hu bert space

• be the unit Gaussian determined random field . If into another , it induces a unitery mapping r(u):r(R)-”r(K),
are orthonormal in H and 

~ is a Bounded Baire 
where on Hri~ 

r(u)=u9.a.~
T T . Similarly if I:H-+K is an

~— cid
funct ion on R~, then isometric embedding then it induces an isometric embed—

11412/2 ding r(I): r(H)~r(K) arid similarly for an orthogonal~$(F(f 1),.. 
~~~~~~~~~~~~~~~~~~~ - 

proj ection E:H4K . If A :H~K is a contraction then
F(A):r(H)-’r(K) is defined to be the direct sum to

For concreteness (1l,A,p) may be chosen to be countably r CA) :H -‘-K , where F(A) P.9. . ~~~ Nov any contraction
- ;  infinite copies of (R ,B(R), (~~~l/2e

_X /2
~~). 

n n a n n— folcL

• If H donates expectation on (c~,A ,p) then A:fl-’-K can be decomposed as

E(F(f1). .F(f2~~1
))~O (‘32) ••

~~
‘&

%* K
’

~~~~~
E(F(f1

)..F(f~~))=E(f~~1 ~~~~~~~~~ 
, 

~ 
(33) where I, U and E are as above.

n n Hence r(A)=r(E)r(u)r(I). Now r(A) is doubly
where the sum in over all pairings or 1, . . . ~2 , i,e. Markovi an in the sense that

i
~
<,. .<i~; i1<J1~

, . . ~~~~~~ and

(11
,j
11. 

.. ,i~ ,j) is a permutation 1,. ..2 . a>C~~~~~ �~0n rtA)l~ l
IP(fl,A,P) is denoted by TY(H) and Ii!) denotes Er(A)cz=FXt. (39)

of all elements of the form PCI ) . .  .P(f ) with m<n to ~~~.and let r(1I)~ denote the orthog~nal coinBiement of It ~~~~~ out thatr(A) has stronger contractive

- 

- 

L2(H). r(H)<n be the closed linear span in r(H) A~~ doubly Markovian operation Is a contraction from

5 
.
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properties and the precise statement of this is an im—
portant theorem of Nelson. Before we di scuss this

j • - result it is useful to recall that conditional
expectations on L2(ci ,A,u) can be characterised as linear
positivity preserving operators which are idenpotant ,
of norm <1 and preserve constants. We also know that
for p (1,’”], p~&2 , all linear operators T on
which are ideinpotent, contracting arLd such that T i l
is necessarily a conditional expectation.

Theorem 3.1 (nelson Hv-ocvcontraet~vit ’~ Theorem ).
Let A:H4K be a contraction. Then [(A) is a

contraction from L’~(H)+ TY (K ) for l<q9<n provided that

I~i~~~~
’2 (

~~
)

If (leD) does not hold then rCA ) is not a bounded
operator from
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